Can you take a nine letter word for a type of large ship, and insert two new letters (without changing the order of the original nine letters) to form an eleven letter word for a heroic job?
Puzzle of the Week #24 - parkrun Vowels
This week's puzzle lies at the intersection of two of my interests: puzzles and parkrun.
There are currently 374 senior UK parkrun venues; these can be found at www.parkrun.org.uk/events
There are three events whose names contain all five vowels (a, e, i, o, u). Can you find them?
Puzzle of the Week #23 - SE Words
Can you think of five four-letter words, each beginning with SE?
Sounds simple, however you cannot use a letter more than once, and you can’t re-use the S or the E anywhere else. So for instance, SELL is not allowed, as it has two Ls, SEEK is not allowed as it repeats the E, and you cannot have both SENT and SEAT, as both have a T, but either word is acceptable on its own.
Puzzle of the Week #22 - Hex-Agony
I have a hexagon, with six sides of equal length. Opposite pairs of sides are parallel, and the distances between these parallel sides are 7cm, 8cm and 9cm respectively.
What is the area of my hexagon?
Puzzle of the Week #21 - Topped and Tailed
I have taken some eight-letter words, and removed the first two letters and the last two letters. Can you work out what the words originally were?
_ _ MEMA _ _
_ _ VEAW _ _
_ _ ADAC _ _
_ _ REWE _ _
_ _ MEWO _ _
Puzzle of the Week #20 - Construction Rods
You have eight rods, four of length 11cm, and four of length 12cm.
Fixing these rods together end-to-end only, how can you create a three-dimensional shape that is precisely 7cm high?
Puzzle of the Week #19 - Moving Houses
Annabel moved from St Albans to Lancaster
Nicole moved from Newcastle to Enfield
Ted moved from Galashiels to Dorchester
Where did Harold move from and to?
Puzzle of the Week #18 - Egyptian Fractions
In ancient Egypt, they only liked to use so-called unit fractions, which are fractions that have 1 as the numerator. If they wanted to represent a fraction that wasn't already a unit fraction, they would express as the sum of different unit fractions.
So, for instance 3/4 = 1/2 + 1/4. and 2/7 = 1/4 + 1/28.
How can you express 39/50 as a sum of different unit fractions?
Puzzle of the Week #17 - Quotebreaker
Quotebreaker is back by popular demand! I have taken a quotation, and I have replaced each of the letters with one-, two- of three-digit numbers according to the table below. Can you change it back to letters?
Be careful though, as some sequences of numbers could lead to several words, for instance 31110 could mean CAT (3,1,110), but could equally mean MAD (31,1,10).
213210313211 10011331003011 110211 1301131121103 10311110211 110201110 1102011121 110211 12213211. 21110 21103 333230121 1102011 10313211 10011331003011 1132033 110211 113213030213213 11033 1103121110 110201110 1102011121 110211 31021122121.
Puzzle of the Week #16 - Number Hunt
I have in mind a five-digit number. The first two digits form a square number. The last three digits also form a square number.
If I cube each of the five digits in turn and add them together I get 227.
What is my five-digit number?
Puzzle of the Week #15 - Bolt Head
I’ve used a micrometer to measure a bolt head, both from edge to edge, and from point to point.
I later realise that I had forgotten to ‘zero’ the micrometer before I used it, meaning that both measurements are wrong, but they are wrong by the same amount.
What should the measurements be?
Puzzle of the Week #14 - NE Words
Can you think of five four-letter words, each beginning with NE?
Sounds simple, however you cannot use a letter more than once, and you can’t re-use the N or the E anywhere else. So for instance, NELL is not allowed, as it has two Ls, NEON is not allowed as it repeats the N, and you cannot have both NETS and NEAT, as both have a T, but either word is acceptable on its own.
Puzzle of the Week #13 - Sloping Wall
I've built a sloping wall, on level ground. One end is 10ft high, and the other end is 15ft high.
I attach a piece of string from each top corner to the opposite bottom corner, forming an 'X' shape. Assuming the strings are pulled tight, what height from the floor is the point where the two string cross?
Puzzle of the Week #12 - Traditional Maze
Simply find a path from the top left corner to the bottom right corner.
Puzzle of the Week #11 - Rearrange
Rearrange the letters of
FORWARD SUPAHERO
to make a four word phrase.
Puzzle of the Week #10 - Alyssa's Blocks
Alyssa has some toy building blocks.
All but 6 of them are blue.
All but 5 of them are red.
All but 4 of them are yellow.
All but 3 of them are green.
How many blocks does she have and what colour are they?
Puzzle of the Week #9 - Third Avenue
Draw a path that visits every dot once only.
The path can be made only of horizontal and vertical lines.
The path cannot cross itself or branch off, and must return to the start to form a complete circuit.
Every third turning point of the path has been marked with a triangle symbol. In other words, at each symbol there will be a 90 degree turn in the path, and there will be two further 90 degree turns before the next symbol.
Puzzle of the Week #8 - Quotebreaker
Quotebreaker is back by popular demand! I have taken a quotation, and I have replaced each of the letters with one-, two- of three-digit numbers according to the table below. Can you change it back to letters?
Be careful though, as some sequences of numbers could lead to several words, for instance 31110 could mean CAT (3,1,110), but could equally mean MAD (31,1,10).
233121103 113213030 211 233121103, 13210 10333 113213030 1 3033110 3312 312110103011-1131110 311132.
Puzzle of the Week #7 - Countdown Numbers Game
Use the numbers:
1 3 6 10 15 21
a maximum of once each, and just the four basic arithmetic operators:
+ - x ÷
to try to achieve a total of:
2015
Puzzle of the Week #6 - Paddocks
Draw fences between some of the posts so that each post is at the junction of exactly three fences.
These fences will divide the field into several paddocks; any paddock whose area is greater than a single triangle will contain a number, which will indicate the area of the paddock that contains it.
The boundary fence is already in place, so any post on the boundary only needs one more fence emerging from it in order to make up its full complement.
For example:
Here is the puzzle: